
VN2A PB00

Current Sensor

Model Number:

VN2A 800 PB00 VN2A 1100 PB00

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL94-V0
- ♦ Small size
- ♦ High accuracy
- ♦ Very good linearity
- ♦ Very low offset drift over temperature
- ♦ Standards:

EN50178: 1997IEC 61010-1: 2000UL 508: 2010

Applications

- ♦ AC variable speed
- Uninterruptible Power Supplies (UPS)
- ♦ Static converters for DC motor drives
- Switch Mode Power Supplies (SMPS)
- Power supplies for welding applications

Safety

This sensor must be used according to IEC 61010-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g. Primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Doc Ref.: 1800 000 01271 06/05/2023 www.chipsensor.cn

VN2A PB00

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	V c	V	±18

X Stresses above these ratings may cause permanent damage.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	<i>T</i> _A	$^{\circ}$ C	-40		85	
Ambient storge temperature	<i>T</i> s	$^{\circ}$ C	-45		100	
Mass	m	g		60		
Standards	EN 50178, UL 508					

Insulation coordination

Parameter	Symbol	Unit	Value	Comment		
Rms voltage for AC insulation test @ 50Hz,1min	V _d	kV	4.1			
Plastic case	-	-	UL94-V0			
Comparative traking index	СТІ	PLC	3			
Application example		1	600V	Reinforced insulation,according to		
Application example	_		CAT III PD2	EN 50178, IEC 61010-1		
Application example	-	-	1500V	Basic insulation,according to		
дриваноп ехапре			CAT III PD2	EN 50178, IEC 61010-1		

^{*} Exposure to absolute maximum ratings for extended periods may degrade reliability.

Electrical data

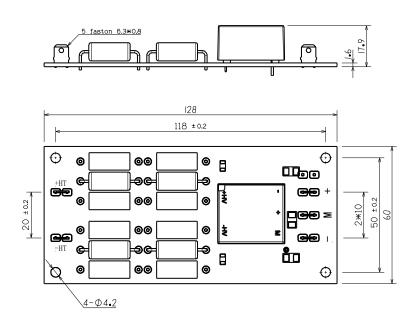
VN2A 800 PB00

 \aleph With T_A = 25 °C, V_C = ±15V, R_L = 100Ω,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	V _{PN}	٧		±800		
Maximum measuring current	V_{PM}	V	-1400		1400	
			30		210	@±12V, ±800V
Measuring resistance	R _M		30		100	@±12V, ±1400V
Measuring resistance	πм	Ω	100		340	@±15V, ±800V
			100		180	@±15V, ±1400V
Output nominal rms current	/ _{SN}	mA		25		
Supply voltage	V c	٧	±12	±15		@ ±5%
Primary coil resistance	R₽	kΩ		80		@ 25 ℃
Secondary coil resistance	R s	Ω			117	@ 85℃
Conversion ratio	Κ _N	-		800V:25mA		
Coil turn ratio	N₁/ N₃	-		2500:1000		
Current consumption	/ c	mA		10 + /s		
Electrial offset current	<i>l</i> ₀	mA	-0.15		0.15	
Thermal drift of offset current	,	от МА	-0.5	±0.1	0.5	@ -25℃~85℃
Thermal unit of onset current	/ ot		-0.8	±0.1	8.0	@ -40℃~85℃
Sensitivity error	$\mathcal{E}_{ extsf{G}}$	%	-0.4		0.4	
Linearity error	$\mathcal{E}_{\!\scriptscriptstyle \perp}$	% of In	-0.2		0.2	
Accuracy@ I _{PN}	Χ	% of In	-0.6		0.6	
Response time@ 90% of I _{PN}	t _r	μs		25		

3 / 5

Electrical data


VN2A 1100 PB00

 \aleph With T_A = 25 °C, V_C = ±15V, R_L = 100Ω,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	V _{PN}	٧		±1100		
Maximum measuring current	V _{PM}	V	-1500		1500	
			30		210	@±12V, ±1100V
Measuring resistance	R_{M}	0	30		100	@±12V, ±1500V
Measuring resistance	Λм	Ω	100		340	@±15V, ±1100V
			100		180	@±15V, ±1500V
Output nominal rms current	/ sn	mA		25		
Supply voltage	V c	٧	±12	±15		@ ±5%
Primary coil resistance	$R_{\mathbb{P}}$	kΩ		110		@ 25℃
Secondary coil resistance	R s	Ω			117	@ 85 ℃
Conversion ratio	Kn	-		1100V:25mA		
Coil turn ratio	N _P / N _S	-		2500:1000		
Current consumption	<i>l</i> c	mA		10 + /s		
Electrial offset current	<i>l</i> ₀	mA	-0.15		0.15	
Thermal drift of offset current	,	4	-0.5	±0.1	0.5	@ -25℃~85℃
memial unit of onset current	/от	mA	-0.8	±0.1	0.8	@ -40℃~85℃
Sensitivity error	$\mathcal{E}_{\mathbb{G}}$	%	-0.4		0.4	
Linearity error	\mathcal{E}_{L}	% of Æ _N	-0.2		0.2	
Accuracy@ I _{PN}	Х	% of In	-0.6		0.6	
Response time@ 90% of I _{PN}	<i>t</i> _r	μs		25		

Dimensions(Unit mm)

Mechanical characteristic

- ♦ General tolerance
- ♦ Sensor
- ♦ Primary connection
- Connection of secondary

±0.3 mm

4pc Φ4.2 mm through hole

2pc Faston 6.3×0.8mm

3pc Faston 6.3×0.8mm

Remarks

- \diamond $I_{\rm S}$ is positive when $V_{\rm P}$ is connected to +HV.
- ♦ The primary side and the voltage under test must be securely connected.

This is a standard model. For different applications(measurement, secondary connections...), please contact CHIPSENSE.